Leading singularities in Baikov representation and Feynman integrals with uniform transcendental weight

نویسندگان

چکیده

We provide a leading singularity analysis protocol in Baikov representation, for the searching of Feynman integrals with uniform transcendental (UT) weight. This approach is powered by recent developments rationalizing square roots and syzygy computations, particularly suitable finding UT multiple mass scales. demonstrate power our determining basis two-loop diagram three external

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Leading singularities and off-shell conformal integrals

The three-loop four-point function of stress-tensor multiplets in N = 4 super Yang-Mills theory contains two so far unknown, off-shell, conformal integrals, in addition to the known, ladder-type integrals. In this paper we evaluate the unknown integrals, thus obtaining the three-loop correlation function analytically. The integrals have the generic structure of rational functions multiplied by ...

متن کامل

Spanning Forest Polynomials and the Transcendental Weight of Feynman Graphs

We give combinatorial criteria for predicting the transcendental weight of Feynman integrals of certain graphs in φ theory. By studying spanning forest polynomials, we obtain operations on graphs which are weight-preserving, and a list of subgraphs which induce a drop in the transcendental weight.

متن کامل

Feynman integrals and motives

This article gives an overview of recent results on the relation between quantum field theory and motives, with an emphasis on two different approaches: a “bottom-up” approach based on the algebraic geometry of varieties associated to Feynman graphs, and a “top-down” approach based on the comparison of the properties of associated categorical structures. This survey is mostly based on joint wor...

متن کامل

Periods and Feynman integrals

We consider multi-loop integrals in dimensional regularisation and the corresponding Laurent series. We study the integral in the Euclidean region and where all ratios of invariants and masses have rational values. We prove that in this case all coefficients of the Laurent series are periods.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of High Energy Physics

سال: 2021

ISSN: ['1127-2236', '1126-6708', '1029-8479']

DOI: https://doi.org/10.1007/jhep07(2021)227